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This paper reviews recent progress made in incompressible Navier-Stokes simulation
procedures and their application to problems of engineering interest. Discussions are
focused on the methods designed for complex geometry applications in three
dimensions, and thus are limited to primitive variable formulation. A summary of efforts
in flow solver development is given followed by numerical studies of a few example
problems of current interest. Both steady and unsteady solution algorithms and their
salient features are discussed. Solvers discussed here are based on a structured-grid
approach using either a finite-difference or a finite-volume frame work. As a grand-
challenge application of these solvers, an unsteady turbopump flow simulation procedure
has been developed which utilizes high performance computing platforms. In the paper,
the progress toward the complete simulation capability of the turbo-pump for a liquid
rocket engine is reported. The Space Shuttle Main Engine (SSME) turbo-pump is used as
a test case for evaluation of two parallel computing algorithms that have been
implemented in the INS3D code. The relative motion of the grid systems for the rotor-
stator interaction was obtained using overset grid techniques. Unsteady computations for
the SSME turbo-pump, which contains 114 zones with 34.5 million grid points, are carried
out on SGI Origin 3000 systems at NASA Ames Research Center. The same procedure has
been extended to the development of NASA-DeBakey Ventricular Assist Device (VAD) that
is based on an axial blood pump. Computational, and clinical analysis of this device are
presented.

INTRODUCTION

Incompressible flow can be considered as a limiting case of compressible flow as the flow speed approaches to a
significantly low value compared to the speed of sound. There are a large number of flow problems of practical
importance in aerospace and other fields which belong in this category. The incompressible Navier-Stokes
equations, which govern these flows, pose a special problem of satisfying the mass conservation equation because
it is not coupled to the momentum equations. Physically, these equations are characterized by the elliptic behavior
of the pressure waves, the speed of which are infinite.

Various methods have been dveloped, which can be classified in numerous ways depending on the choice of
formulations, variables, or algorithms. Since three-dimensional applications involving complex geometries are of our
primary interest, the primitive variabie formulation is chosen in the present study. The primitive variables, namely the
pressure and the velocities, can easily be defined in real geometry compared to derived quantities like stream
function or vorticity. Therefore, for convenience and flexibility, primitive variable formulations were used for developing
incompressible Navier-Stokes codes (INS3D family of codes) at NASA Ames Research Center. The present article
is intended to present our progress made since the review given by the second author in 1989 as a VKI Lecture note
(Kwak, 1989). The solution procedures presented here are mainly within a structured-grid framework. During the last



several years, a large number of review articles and books on CFD discussed incompressible flow methods. For a
more comprehensive eview of conputational methods for incompressible flow in general, readers are referred to
these materials, i.e. Hirsch (1988), Hafez and Oshima (1995).

SOLUTION METHODS

In this section, two solution method:. used in the development of INS3D, namely, an artificial compressibility method
and a pressure projection method, are reviewed. The governing equations will be given first, followed by a discussion
on the computational procedure related to the two methods. Three-dimensional incompressible flow with constant
density is governed by the following Navier-Stokes equations:

8u,-

v 0 (2.1)
ou duu, dp 01,
ow ChE__ 9P T
o ok ox @2

where ! is the time, X; the Cartesian coordinates, % the corresponding velocity components, P the pressure, and
T; the viscous-stress tensor. All the variables have been non-dimensionalized by a reference velocity and length
scale. The viscous stress tensor car be written as

Tij = 2 USL - Rij (23)
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where, U is the kinematic viscosit/, Sq is the strain-rate tensor, and K; are the Reynolds stresses. Various levels

of closure models for Rg are possible. In the present article, turbulence is simulated by an eddy viscosity model
using a constitutive equation of the fallowing form:
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where U; is the turbulent eddy viscosity. By including the normal stress, Rkk, in the pressure, v in equation (2.3)
can be replaced by (U + U:) as follows.
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In the remainder of this note the total viscosity, (v+ v:), will be represented simply by U . The present
formulations allow for spatially varying viscosity.

in general curvilinear coordinates, (‘« > Tl C) the governing equations can be written as
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where F is the right-hand side of the momentum equation, and
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The source term S is used to represent centrifugal and Coriolis forces in a steady rotating reference frame, and will
be discussed later in this section. F ar most flow applications, this term is set to zero.

ARTIFICIAL COMPRESSIBILITY METHOD

Major advances in the state of the art in CFD have been made in conjunction with compressible flow computations.
Therefore, it is of significant interest to be able to use some of these compressible flow algorithms for incompressible
flows. To do this, the artificial compressibility method of Chorin (1967) can be used. In this formulation, the
continuity equation is modified by adding a pseudo-time derivative of the pressure, resulting in
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where .B is an artificial compressioility parameter and T is a pseudo-time parameter. This forms a hyperbolic-
parabolic type of pseudo-time dependent system of equations. Thus, implicit schemes developed for compressible
flows can be implemented to solve for steady-state solution. In the steady-state formulation the equations are to be
marched in a time-like fashion until the divergence of velocity in equation (2.10) converges to a specified tolerance.
The time variable for this process ro longer represents physical time, so in the momentum equations t is replaced
with T, which can be thought of as 2 pseudo-time or iteration parameter.

Physically, this means that waves of finite speed are introduced into the incompressible flow field as a medium to
distribute the pressure. For a truly incompressible flow, the wave speed is infinite, whereas the speed of
propagation of these pseudo waves depend on the magnitude of the artificial compressibility parameter. In a truly
incompressibie flow, the pressure field is affected instantaneously by a disturbance in the flow, but with artificial
compressibility, there is a time lag between the flow disturbance and its effect on the pressure field. Ideally, the
value of the artificial compressibility parameter is to be chosen as high as the particular choice of algorithm will allow
so that the incompressibility is recovered quickly. This has to be done without lessening the accuracy and the
stability property of the numerical method implemented. On the other hand, if the artificial compressibility parameter
is chosen such that these waves travel too slowly, then the variation of the pressure field accompanying these waves
is very slow. This will interfere with the proper development of the viscous boundary layer. in viscous flows, the
behavior of the boundary layer is very sensitive to the streamwise pressure gradient, especially when the boundary
layer is separated. If separation is oresent, a pressure wave traveling with finite speed will cause a change in the
local pressure gradient which will affect the location of the flow separation. This change in separated flow will feed
back to the pressure field, possibly preventing convergence to a steady state. When the viscous effect is important
for the entire flow field as in most internal flow problems, the interaction between the pseudo-pressure waves and the

viscous flow field is especially impcrtant.

Artificial compressibility relaxes the strict requirement of satisfying mass conservation in each step. However, to
utilize this convenient feature, it is sssential to understand the nature of the artificial compressibility both physically
and mathematically. Chang and Kwak (1984) reported details of the artificial compressibility, and suggested some
guidelines for choosing the artificial compressibility parameter. Various applications which evolved from this concept
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have been reported for obtaining steady-state solutions {e.g., Steger and Kutler, 1977, Kwak et al. 1 986; Chang et
al., 1988; Choi and Merkle, 1985). To obtain time-dependent solutions using this method, an iterative procedure can
be applied in each physical time step such that the continuity equation is satisfied (see, Merkle and Athavale, 1987,
Rogers and Kwak ,1988, Rogers, Kwak, and Kiris, 1991, Belov et. al., 1995). Further discussions on the artificial
compressibility approach can be found in the literature (see, Temam, 1979, Rizzi and Eriksson, 1985).

Combining equation (2.10) and the momentum equations gives the following system of equations:
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where R s the right-hand-side o° the momentum equation and can be defined as the residual for steady-state
computations, and where
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When the governing equations are solved in a steadily rotating reference frames, the source term, \) , represents

centrifugal and Coriolis terms. If the relative reference frame is rotating around the x-axis, the source term Sis given

by
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where Q is the rotational speed. I this report, the source term, S, is set to zero other than for rotational steady
solutions. Relative velocity components are written in terms of absolute velocity components U, Vq.and W, as

u=u
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Time-dependent calculation of incompressible flows are especially time consuming due to the elliptic nature of the
governing equations. This means that any local change in the flow has to be propagated throughout the entire flow
field. Numerically, this means that in each time step, the pressure field has to go through one complete steady-
state iteration cycle, for example, by Poisson-solver-type pressure iteration or artificial compressibility iteration
method. In transient flow, the physical time step has to be small and consequently the change in the flow field may
be small. In this situation, the number of iterations in each time step for getting a divergence-free flow field may not
be as high as regular steady-state computations. However, the time-accurate computations are generally an order
of magnitude more time-consuming than steady-state computation. Therefore, it is particularly desirable to develop
computationally efficient methods either by implementing a fast algorithm and by utilizing computer characteristics
such as vectorization and parallel processing.

A time-accurate method using artifizial compressibility developed by Rogers, Kwak, and Kiris {(1991) is summarized
next. In this formulation the time derivatives in the momentum equations are differenced using a second-order, three-

point, backward-difference formula
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where the superscript 7 denotes the quantities at time t =nlt gnd ¥ s the right-hand side given in equation (2.7).

To solve equation (2.13) for a diverg=nce free velocity field at the (” "'1) time level, a pseudo-time level is introduced

~p+l,m+!1
and is denoted by a superscript m. The equations are iteratively solved such that ¥ approaches the new
An+ 1 A n+lm+l
velocity ¥ as the divergence of u approaches zero. To drive the divergence of this velocity to zero, the

following artificial compressibility relation is introduced:
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where T denotes pseudo-time and ﬁ is an artificial compressibility parameter. Combining equation (2.14) with the
momentum equations gives
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where D is the same vector defined in equation (2.13), R is the same residual vector defined in equation (2.11),

and I isa diagonal matrix given by
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Finally, the residual term at the 7 +1 pseudo-time level is linearized giving the following equation in delta form
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As can be seen, this equation is very similar to the steady-state formulation which can be rewritten for the Euler
implicit case as
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Both systems of equations will require the discretization of the same residual vector R The matrix equation is
solved iteratively by using a non-factored Gauss-Seidel type line-relaxation scheme employed by MacCormack
(1985), which maintains stability and allows a large pseudo-time step to be taken. Details of the numerical method
can be found in paper by Rogers, Kwak, and Kiris (1991). The GMRES scheme has also been utilized for the
solution of the resulting matrix equation (Rogers, 1995). Computer memory requirement for the flow solver (INS3D-
UP code) with line-relaxation is 35 times the number of grid points in words, and with GMRES-ILU(0) scheme is 220

times the number of grid points in words.

PRESSURE PROJECTION METHOD

In 1965, Harlow and Welch publishad the first primitive variable method using a Poisson equation for pressure. In
this method, called the marker-and-cell (MAC) method, the pressure is used as a mapping parameter to satisfy the
continuity equation. By taking the divergence of the momentum equation, the Poisson equation for pressure is

obtained:
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The usual computational procedure involves choosing the pressure field at the current time step such that continuity
is satisfied at the next time step. The original MAC method is based on a staggered arrangement on a 2D
Cartesian grid. The staggered grid conserves mass, momentum, and kinetic energy in a natural way and avoids odd-
even point decoupling of the pessure encountered in a regular grid (Gresho and Sani, 1987). Even though the
original method used an explicit Euler solver, various time advancing schemes can be implemented with this
formulation. Ever since its introduction, numerous variations of the MAC method have been devised and successful

computations have been made.

The MAC method can be viewed as a special case of the projection method (i.e. Chorin, 1968). In this method the
strict requirement of obtaining the correct pressure for a divergence-free velocity field in each step may significantly
slow down the overall computationa! efficiency. To satisfy the mass conservation in grid space, the difference form of
the second derivative in the Poisson equation has to be constructed consistent with the discretized momentum

equation (see Kwak, 1989).

To solve for a steady-state solution the correct pressure field is desired only when the solution is converged. In this
case, the iteration procedure for the pressure can be simplified such that it requires only a few iteration at each time
step. The best known method using this approach is the Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) (Patankar, 1980 ; Chen et al., 1995). The unique feature of this method is the simple way of estimating the
velocity and the pressure correction. This feature simplifies the computation but introduces empiricism into the
method. Despite its empiricism, th2 method has been used successfully for many steady-state computations. It is
not the intention of the present papsar to evaluate this method, and readers interested in this approach are referred to

the above cited references.

The time-integration scheme is bised on operator splitting, which can be accomplished in several ways by
combining the pressure, convective, and viscous terms in the momentum equations. The fractional-step method is
based on the decomposition of vector field into a divergence free component and a gradient of a scalar field. Since its
inception, this approach is perhaps the most widely used method in computing incompressible flow. Variations of
this idea are too numerous to list here.

The common application of fractional-step method is done in two steps. The first step is to solve for an auxiliary
velocity field using the momentum equations. In the second step, the velocity field is corrected by using the
pressure, which can map the auxiliary velocity onto a divergence free velocity field. In the first step, the momentum
equations are discretized in time using a second-order implicit Ringa-Kutta method. The Poisson equation for
pressure is obtained by taking the civergence of the momentum equations and by using the continuity equation. For
the spatial discretization, a finite-volume formulation is used where pressure is defined at the cell center and the
mass fluxes at the faces of each zell. The mass-conservation equation is evaluated by computing the mass flux
across faces of a computational cell. When the mass fluxes are chosen as unknowns, the continuity equation is
satisfied automatically in generalized coordinate systems. The continuity equation with this choice of the dependent
variables takes a form identical to the Cartesian case. Therefore, the mass fluxes are considered as the natural
dependent variables for projection methods in curvilinear coordinates. Treating the mass fluxes as dependent
variables in a finite-volume formulation is equivalent to using contravariant velocity components, scaled by the inverse
of the transformation Jacobian, in & finite-difference formulation. This choice of mass fluxes as dependent variables
complicates the discretization of the momentum equations. In order to replace Cartesian velocity components by the
new dependent variables, namely, the contravariant velocity components, the corresponding area vectors are dotted
with the momentum equations. Then the integral momentum equation is evaluated on different computational cells
for each unknown. For the definition of variables, a staggered grid orientation was selected to eliminate checker-
board-like oscillations in pressure and provides more compact stencils. Full details on the derivation of momentum
equations and the solution procedure is outlined in references by Rosenfeld, Kwak, and Vinukur (1991) and by Kiris
and Kwak (1996). A flow solver using the above procedure is designated as INS3D-FS. Since each equation is
solved in a segregated fashion, the nemory requirement for GMRES solver in INS3D-FS is only 70 times the number

of grid points in words.



COMPUTED RESULTS

FLOW PAST 90°FLAT PLATE

Numerical results for the time evolution of twin vortices behind a two-dimensional flat plate are presented. Several
cases were run to with various algorithmic parameters. To expedite the process, a two-dimensional test case is
selected here. It should be noted that the associated flow solvers, INS3D-UP for the artificial compressibility method
and INS3D-FS for the pressure projection method, are written for three-dimensional applications. This numerical
experiment is studied to help select a method for large three-dimensional unsteady applications where computing
resources become a critical issue.
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Figure 1. Computational grid for the flow past a 90-degree float plate (plate thickness = 0.03 H).

VELOCHY VECTORS AND HG?ITUDE CONTQURS (INS3D-.FS! VELOCITY YECTORS AND MAGRITUDE CONTOURS (INS3D-F8)

Figure 2. Velocity vectors at various non-dimensional times (INS3D-FS).



Computed results from both methods are compared with the experimental data by Taneda and Honji (1971). The
experiment was carried out in a water tank 40 cm wide. A thin, 3 cm high plate was immersed in water. The flow
was started from rest impulsively at the velocity u=0.495 cm/s. The Reynolds number for this case is 126 based on
the plate height. The computational grid size is 181x81 in flow and vertical directions, and 3 layers of this grid are
used to obtain two-dimensional results (figure 1). Since INS3D-FS is written in a finite-volume staggered-grid
formulation, it requires one additicnal ghost cell in each direction. Figure 2 shows calculated velocity vectors
obtained from INS3D-FS at various times. The flow separates at the edges of the plate and forms a vortex pair. The
twin vortices become longer in the fow direction with time. The time history of the stagnation point is compared with
experimental results and other numerical results in figure 3. Symbols represent experimental measurements, and
the solid line and the dashed line represent results from INS3D-UP and INS3D-FS, respectively. In addition the
dotted line shows the numerical results from finite element formulations of Yoshida and Nomura (1985).

In figure 3, the interval for time integration was 0.5 sec, which corresponds to nondimensional value of 0.0825. Even
though the plate started impulsively in the experiment, the computations presented in figure 3 have a slow start
procedure. In figure 4, two different ways of starting the flow are prescribed, namely, an impulsive start as in figure 4a
and aslow start as prescribed in figre 4b. Yoshida and Nomura (1985) used the same slow start procedure in their
calculations. For the slow start casa, the velocity profile shown in figure 4b is prescribed and the starting time of
calculation is appropriately shifted from that of experiment.

First, INS3D-FS results are presented in figures 5 and 6. In figure 5, the effect of starting procedure on the
development of the flow is shown. Here, a non-dimensional time step of 0.0825 was used. There are measurable
differences in the resulting flows. Increasing the spatial resolution does not change the results significantly while
decreasing the time step improves the agreement with experiments, as shown in figure 6.
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Figure 3. Calculated time history of the stagnation Figure 5. Effects of staring  procedure.
point.
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Figure 4. Prescribed velocity for an impulsive start (a) and for a slow start (b).

These unsteady computations using a time step size of 0.0825 was completed in two hours of CPU time on single
processor Cray-J90. Computationa: results using the artificial compressibility code, INS3D-UP, are presented in
figure 7. Results using two different artificial compressibility parameters, BETA, are compared. For time accurate
solutions, sub-iterations should be terminated when the divergence of the velocity reached a specified error limit. In
reality this will impose heavy burden on available computing resources. Therefore, the maximum number of sub-
iterations, NSUB, is artificially fixad at 10 and 40 for the present experiment. With 10 subiterations, the
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incompressibility conditions is not fully satisfied at each physical time step resulting in large error as time
progresses. Computing time requirement using line relaxation scheme is large ranging 4 and 10 hours of CPU time
for 10 and 40 subiterations respectizely on a single processor Cray-J90 computer. It is observed that for engineering
applications, a fast convergence scheme is necessary at each physical time step in order to meet incompressibility
condition within reasonable accuracy. Otherwise, artificial compressibility method with line relaxation scheme can
be expensive for 3D time-accurat2 computations. In order to alleviate this difficulty, GMRES-ILU(0) solver is
implemented in INS3D-UP at the expense of increasing memory requirement. The results shown in figure 8 were
obtained with less than 4 hours of Cray-J90 computer. The agreement between the computed results and
experimental data is better. With GMRES-ILU(0) solver, the mass flow ratio between inflow and exit is always
satisfied. In addition, the discrepancies between numerical results are very small when two different values of

artificial compressibility parameter were used.
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When a fast converging scheme, such as a GMRES-ILU(0) solver, was implemented into artificial compressibility
method, reasonable agreement was obtained between computed results and experimental data. Memory
requirement of this scheme is the major drawback for three-dimensional large-scale applications. However, using
parallel computing platforms, such as SGI Origin systems, memory requirement may not be a significant issue. The
line-relaxation scheme in artificial compressibility method becomes very expensive for time accurate computations
and could lead to erroneous solutions if incompressibility is not enforced in each time step. The pressure projection
method is usually more expensive ‘or steady state solutions due to the time required for the Poisson equation for
pressure. For cases where very smaill physical time step is required, the pressure projection method was found to be
computationally efficient since it does not require subiterations procedure. However, the governing equations are not
fully coupled as in the artificial compressibility approach, and this may affect the robustness and limit the maximum
allowable time step size for complicated geometries in engineering applications.

PUMP TECHNOLOGY FOR LIQUID ROCKET ENGINE

Until recently, the high performance-pump design process was not significantly different from that of 30 years ago.
During the past 30 years a vast amount of experimental and operational experience has demonstrated that there are
many important features of pump flows which are not accounted for in the current semi-empirical design process.
Pumps being designed today are nc more technologically advanced than those designed for the Space Shuttle Main
Engine (SSME). During that same time span huge strides have been made in computers, in numerical algorithms,
and in physical modeling. The major accomplishment of this work is to extend the CFD technology to validate
advanced CFD codes on pump flows: and to demonstrate their value to the pump designer. Rocket pumps involve full
and partial blades, tip leakage, and an exit boundary to diffuser. In addition to these geometric complexities, a
variety of flow phenomena are encountered in turbopump flows. These include turbulent boundary layer separation,
wakes, transition, tip vortices, three-dimensional effects, and Reynolds number effects. In order to increase the role
of Computational Fiuid Dynamics (CFD) in the design process, he CFD analysis tools must be evaluated and
validated so that designers gain confidence in their use.

The incompressible Navier-Stokes flow solver, INS3D-UP, has been validated for pump component analysis. In this
validation effort, computed results cotained from a rocket-pump inducer simulation were compared with experimental
data. Further details can be found in the paper by Kiris at al (1993). The resulting computational procedure was
applied to the flow through the S3ME High Pressure Fuel Turbopump impeller and to the development of an
advanced pump impeller (Kiris and Kwak 1994). The results from the advanced-pump impeller-flow analysis are

presented next.
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Figure 10. Advanced pump impeler computational
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Figure 11. Comparison of circumferentially averaged

meridional velocity at the impeller exit.

In Figure 9, a cross-sctional view of the advanced-pump impeller is shown schematically. The computational model
of this pump includes the impeller and the exit cavity region. Figure10 shows the computational grid near the hub
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region of the impeller. The impeller fesign flow rate is 1,205 gal/min with a design speed of 6,322 rpm. The Reynolds
“Number for this calculation was 181,283 per inch. In Figure 11, the meridional \elocity obtained from steady-state
calculations in the rotating referance frame is shown at the impeller discharge. A relative x-distance is measured
from the shroud to hub, where x=1.0 is the hub. The meridional velocities, Cm, were integrated along a radial strip for
each constant x position and they were non-dimensionalized by the wheel speed of 249.5 ft/sec. The meridional
velocity distribution for 5% and 10% recirculation from the exit shroud cavity were also plotted. When the exit
shroud cavity has leakage to the impeller eye, the velocity peak at the impeller exit moves toward to the center of
the b2 width, where b2 is defined as the blade height at the impeller exit (see figure 9). However, the shroud leakage

has only minor effects on the soluticn at impeller exit (Figure 11).
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in Figure 11, the symbols represent experimental data, and the lines represent Cm distributions for the flow with
vaneless space at the exit of the impeller. The test data shows that the peak is closer to the center of the b2 width.
The discrepancy between the computed results and experimental data is partially due to the recirculation flow in the
hub cavity. The leakage at the hub cavity leads to a stronger recirculation region which shifts the velocity peak to the
center of the b2 width. Since the CFD analysis did not include the leakage at the hub cavity, the predicted
recirculation region in the vaneless space is not as strong as in the experimental study.

Figure 12 shows blade-to-blade velocity distributions at the impeller exit. The blade-to-blade velocity distribution
illustrates the impeller-exit flow cistortion. Symbols represent the experimental data and the lines represent
computed results. The jet-wake like pattern, which produces and unsteady load in the diffuser vanes, was captured
at both meridional locations. Overal', the numerical results compare reasonably well with the experimental data.

More recently, an unsteady-flow simulation capability utilizing overset grid approach for a muiti-component
turbopump geometry was developed at NASA-Ames Research Center. The motivation of this effort was primarly was
based on two elements. First, the entire turbo pump simulation is intended to provide a computational framework for
the design and analysis of an entire liquid rocket engine fuel supply system. The second motivation for this research
was to support the design of liquid rocket systems for development of space transportation systems. Since the
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space launch systems in the near future are likely to rely on liquid rocket engines, increasing the efficiency and
reliability of the engine components; is an important task. A substantial computational time reduction for these 3D
unsteady flow simulations is require to reduce the design-cycle time of the pumps. Part of this speed up will be due
to enhancements in computer hardware. The remaining portion of the speed-up must be contributed by advances in
algorithms and by efficient parallel implementations. The following section outlines the initial effort and steps taken in

order to reach this speed-up.

The geometry for a typical liquid >xygen pump has various rotating and stationary components, such as flow-
straightener, inducer, impeller, diffuser, where the flow is extremely unsteady. Figure 13 shows the geometry and
computed surface pressure of the nducer from steady-state components analysis. When rotating and stationary
parts are included, time-dependent simulations need to be carried out due to relative motion of the components. To
handle the geometric complexity, ar overset grid approach is used.
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Figure 14. Overset grid system for the impeller long Figure 15. Geometry of SSME-rig1 shuttle upgrade
blade section with tip clearance. pump impeller

The overset structured grid approacn to flow simulation has been utilized to solve a variety of problems in aerospace,
marine, biomedical and meteorologcal applications (Chan 2002). Flow regimes can range from simple steady flows
as that of a commercial aircraft, to unsteady three-dimensional flows with bodies in relative motion, as in the case of
turbopump configurations. A geometrically complex body is decomposed into a number of simple grid components,
as shown in figure 14. In Figure 14, only long-blade impeller section is shown. For the entire configuration including
inlet guide vanes, impeller blades and diffuser blades as shown in Figure 15, the computational grid has been
generated by using 34.3 Million grid points with 114 zones. The freedom to allow neighboring grids to overlap
arbitrarily implies that these grids can be created independently from each other and each grid is typically of high
quality and nearly orthogonal. Connactivity between neighboring grids is established by interpolation at the grid outer
boundaries (Meakin 2001). Additicn of new components to the system and simulating arbitrary relative motion
between multiple bodies are ach:eved by establishing new connectivity without disturbing the existing grids.
Scalability on parallel compute platforms is naturally accomplished by the already decomposed grid system. For
certain problems, it is more efficient to gather the grids into groups of approximately equal sizes for paraliel
processing.

The performance of two different approaches in implementing multi-level parallelism of the INS3D code is reported in
this section. The first approach is a hybrid MPI/OpenMP and the second approach is Multi Level Parallelism (MLP)
developed at NASA-Ames Research Center (Taft 2000). The first approach is obtained by using message-passing
interface (MP1) for inter-zone parallelism, and by using OpenMP directives for intra-zone parallelism. INS3D-MPl is
based on the explicit message-passing interface across MPI groups and is designed for coarse grain parallelism.
The primary strategy is to distribute the zones across a set of processors. During the iteration, all the processors
would exchange boundary condition data between processors whose zones shared interfaces with zones on other
processors. A simple master-worker architecture was selected because it is relatively simple to implement and it is



a common architecture for parallel CFD applications. All I/O was performed by the master MPI process and data
was distributed to the workers. Afte- the initialization phase is complete, the program begins its main iteration loop.

The MLP approach differs from the MPl/OpenMP approach in a fundamental way in that it does not use messaging
at all. All data communication at the coarsest and finest level is accomplished via direct memory referencing
instructions, however, this can orly executed on shared-memory computers. The coarsest level parallelism is
implemented by spawning indepencent processes via the standard UNIX fork. The advantage of this approach over
the MPI procedure is that the user does not have to change the initialization section of the large production code.
Library of routines are used to initate forks, to establish shared memory arenas, and to provide synchronization
primitives. The boundary data for the overset-grid system is updated in the shared memory arena by each process.
Other processes access the data rom the arena as needed. Figure 16 and figure 17 show the speed-up for the
SSME impeller computations using 19.2 million grid points by using MPI/OpenMP and MLP strategies, respectively.
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Figure 16. Time (sec) per iteration for SSME

Figure 16. Time (sec) per iteration for SSME
impeller computations using INS3D-MLP.

impeller computations using INS3D-MPI/OpenMP.

Figure 17. Snapshots of particle traces and pressure surfaces from unsteady turbopump computations.

Using the MLP parallel implementation, time-accurate computations for the SSME-rig1 configuration have been
carried out on SG! Origin 2000 znd 3000 platforms. Instantaneous snapshots of particle traces and pressure
surfaces from these computations are shown in Figure 17. The initial conditions for these simulations used flow at
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rest, and then the impeller started to rotate impulsively. Three full impeller rotations were completed in the
‘simulations using 34.3 million grid points. Using 128 SGI Origin 3000 CPUs, one impeller rotation was competed in
less then 3.5 days. This capability is needed to support the design of pump sub-systems for advanced space
transportation vehicles that are likely to involve liquid propulsion systems. To date, computational tools for
design/analysis of turbopump flows are based on relatively lower fidelity methods. An unsteady, three-dimensional
viscous flow analysis tool involving stationary and rotational components for the entire turbopump assembly has not
been available for real-world engineering applications. The present effort provides developers with information such as
transient flow phenomena at start ip, and non-uniform inflows, and will eventually impact on system vibration and

structures.

VENTRICUALR ASSIST DEVICE

Approximately 20 million people worldwide suffer annually from congestive heart failure (CHF), a quarter of them in
America alone. In the United States, an alarmingly low 2,000 to 2,500 donor hearts are available each year. One
potential approach to improve this situation is to use a mechanical device to boost or to create blood flow in patients
suffering from hemodynamic deterioration; that is, loss of biood pressure and lowered cardiac output. The goal of this
device can be to replace the naturzl heart, i.e. total artificial heart, or to assist an ailing heart, i.e. ventricular assist
device (VAD). In either approach, the device can be used to bridge the gap while waiting for a matching donor heart
for transplantation. However, to ease the shortage of donor hearts, making these devices suitable for long-term or

permanent use would be an ultimate goal.

Another benefit of an assist device i the potential for providing time for the natural heart to recover. In some patients,
it has been observed that the natural heart can recover by unloading the pumping requirement through the use of a
VAD. In what conditions this might happen is not very well quantified at this time and should involve physiological
particulars of patients among other ‘actors. From pump technology point of view, the challenge is to design a device
which can deliver the required blood circulation while not adversely impacting human physiological conditions.

Requirements for a VAD related to fluid dynamics are demanding such as: simplicity and reliability; small size for
ease of implantation; pumping capacity to supply 5 liter/min of blood against 100 mmHg pressure; high pumping
efficiency to minimize power requirements; and minimum hemolysis and thrombus formation. In addition to fluid
dynamic issues, there are many other important aspects to be taken care of such as material compatibility with the
human body, controls and implantation procedures. Due to the complexity of the flow physics and the delicate
operating conditions, an empirical epproach to quantify the flow phenomena in a VAD is very time consuming and
expensive, especially to study many design variations. CFD simulation tools hold the potential to be invaluable for
the development of these devices. In this section, the discussion is focused on how fluid dynamic issues of VAD can
be resolved a computational analyss, which is extremely challenging. Flow is unsteady and involves moving parts.
For a complete analysis of a VAD, a simulation of the human circulatory system has to be coupled to the device in
use. However, for the purpose of developing mechanical components, a truncated circulation system can be
modeled. For example, empirical inflow condition can be specified at the inlet of a VAD. Even with this type of
simplifications, computational approach can produce flow field data in great detail, thus shedding lights to obtain a
better understanding of the domirant flow physics produced by an artificial device. Especially, computational
analysis can be utilized to optimize the design of mechanical devices at a significantly lower cost and time than

required by an empiricai approach.

fn 1989, NASA Johnson Space Center (JSC) began a joint project with the DeBakey Heart Center of the Baylor
College of Medicine (BCM) in Houston to develop a new implantable prototype LVAD system. This LVAD is based
on a fast rotating axial pump requiring @ minimum number of moving parts. To make it implantable, the device has
been made as small as possible, requiring a very high rotational speed. The computational procedure described in
the pump section has been used tc provide the designers with a view of the complicated fluid dynamic processes

inside this device.

The flow through the baseline design of the VAD impeller was numerically simulated by using the INS3D-UP flow
solver and a steady rotating frame of reference. Zonal multiblock grids were used in this component analysis. The
surfaces of the computational grids for the VAD baseline impeller are shown in Figure 18. The domain is divided into
five zones with dimensions of 127 » 39 x 33, 127 x 39 x 33,59 x 21 x 7,47 x 21 x5, and 59 x 21 x 7, respectively.
Zone 1 is the region between the suction side of the partial blade and the pressure side of the full blade; the region
between the pressure side of the partial blade and the suction side of the full blade is filled by zone 2; and zones 3
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through 5 allow tip-leakage effects o be included in the computational study and occupy the regions between the
impeller blade tip and the casing. A: the zonal interfaces, grid points were matched one-to-one. For all zones, an H-
H type grid topology was used. An Htype surface grid was generated for each surface using an elliptic grid
generator. The interior region of the three-dimensional grid was filled using an algebraic-grid generator coupled with
an elliptic smoother. Periodic boundary conditions were used at the end points in the rotational direction. The design
flow of this impeller is 5 liters per minute and the design speed is 12,600 revolutions per minute (rpm). The problem
was non-dimensionalized by the tube diameter (0.472 inches) and the impeller tip-velocity. The solution was
considered converged when the ma<imum residual had dropped at least five orders of magnitude. Figure 19 shows
the flow pattern near the suction sid:z and pressure side of the baseline impeller blades.
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Figure 21. Pressure surfaces of the baseline design

Figure 20. Pressure surfaces o the baseline design (top) and new impeller design.
(top) and new impeller design.

A parametric study was performed to optimize the impeller blade shape and the tip clearance. Initially, three different
impeller-blade designs with a tip clearance of 0.009 inches were analyzed. Then baseline blade shape was
analyzed with two tip clearances; the tip clearance of 0.0045 inches shows better hydrodynamic performance in
terms of efficiency and head coefficiant than with a tip clearance of 0.009 inches.

Using this design with a tip clearance of 0.0045 inches as the baseline impeller design, ideas from rocket

propulsion were introduced to develop a new implantable VAD. In collaboration with Micromed Technologies and
NASA-JSC engineering team and BCM researchers, a new design consisting of the baseline impeller plus an
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inducer was investigated. The hut and blade surfaces of the baseline impeller and the new impeller, colored by
nondimensionalized pressure, are shown in Figure 20. The pressure gradient across the blades, due to the action of
centrifugal force, and the pressure rise from inflow to outflow are shown. The inducer provides a sufficient pressure
rise to the flow in order to prevent the cavitation on the impeller blades. Figure 21 shows the particle traces through
the new impeller design. The traces are colored by the relative total-velocity magnitude. The particles were released
near the inducer leading edge, the hub, the inducer blade pressure side, and the tip regions. The swirling motion of
the particles indicates a secondary flow region between the partial and the full blades.The particles released near
the pressure side of the blade indicate a radial velocity component inside the blade boundary layer. The particles
tend to flow from the hub to the tip of the blade. The particles near the inducer leading edge and full blade trailing

edge indicate the presence of back flow.

0.3 }! %
= | T
2 02 5
& &
2 o 3
5 i
v ; 1
0071 x
£ 2
% i namw_} ?:J) T e
ol &
> f S : : i
N : ; : ‘ ; 0.2 04 ¢11) G.3
0.2 T T i T T
0.0 0.2 04 0.6 0.8 10 blaide height

blade height

Figure 22. Meridional velocity distribution along
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Parametric studies to eliminate the back flow near the hub region by tapering the hub surface have also performed
for this configuration. Figure 22 shows the circumferentially averaged meridional velocity distribution along the blade
height for various designs. The original blade design is referred to as Design |. Design Il has less blade curvature
than Design | in the trailing edge region, and Design Ill has more blade curvature than Design I. In Design IV, the
blade shape for Design | is kept anc the tip clearance is reduced from 0.009 inches to 0.004 inches. In Design V, the
hub region has the blade shape for Design | and the tip region has the blade shape for Design Il. In this design, the
impeller blades have backward lear: near the trailing edge region. In Design VI, the blades have forward lean which
includes Design IIl in the hub region and Design | in the tip region. Design VIl has small tip clearance gap, Design |
blade shape and an inducer georretry upstream of impelier blades. In Figure 22, all designs except Design VI
showed back flow near the hub region. The back flow has been reduced with forward blade lean which is suggested
as a design change. Figure 23 shows the efficiency curves for these design variations. The inducer addition clearly

shows substantial improvement in the hydrodynamic efficiency.
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Figure 25. Contribution of CFD analysis to VAD design.

Besides improving the pumping effciency, the design of the VAD requires good wall washing near the solid walls
and reducing the stagnation regions. One of the critical regions for potential blood clotting is near the bearing area
between rotating and non-rotating components. Clotting can be caused in the hub area due to either high shear or
stagnation, depending on the gap and configuration of the area. Figure 24 shows velocity vectors colored by velocity
magnitude for four different bearing designs. Design 1 is the original baseline design with the cavity width of b. This
design showed very high shear stresses near the rotating hub face and very stagnant fluid region in the lower portion
of the cavity. Increasing the cavity width to 3.5b (Design 2), and to 8b (Design 3 and 4) showed that the recirculation
was increased in the cavity. In order to eliminate stagnant areas in the lower portion of the cavity, the hub surface
was tapered. Tapering the hub surface reduced the cavity height, accelerated the flow near the hub region, and
resulted in stronger recirculation in the cavity (Design 4). A modified version of Design 4 has been adopted in the
current DeBakey VAD design. Figure 25 shows the areas that the VAD design is improved by using the present
CFD analysis tool. This unique insight into the internal fluid structures led to an improved heart-assist device which
enabled human implantation of the device. As of June, 2002, over 160 patients have successfully received this VAD.
Thus, improved designs made possible because of the current work is making a far-reaching impact on human

health.

SUMMARY

In this paper, incompressible Navier-Stokes solvers designed for three-dimensional flow simulations have been
discussed. The discussion has been limited to the primitive-variable formulation as it causes fewer complications in
setting the boundary conditions. Numerous computed results have been presented to illustrate the numerical
procedures. Even though computer speed and memory have been increased substantially in the recent past, the
speed and the memory requiremenis of a flow solver are still major factors affecting the turnaround time. INS3D-UP,
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which is an upwind finite-difference code based on an artificial compressibility approach, has been being applied to a
wide variety of applications for steady-state, time-accurate and rotational-steady solutions. INS3D-FS, which is
based on a pressure projection method using a finite volume discretization on staggered grids, was written solely for
solving time-dependent problems. These solvers have been utilized in many applications of major engineering
significance. As an example, an efficient and robust solution procedure for 3-D turbopump analyses and its spin-off
application to VAD impeller has been presented. The flow through an advanced turbopump impeller and SSME rig-1
configuration have been success‘ully simulated. The validated solution procedure was then applied to the
development of the DeBakey VAD. Various design improvements were made through the use of this computational
tool. For example, the addition of an inducer dramatically increased pumping efficiency, thereby reducing the
hemolysis to an acceptable level for human use, and an optimum cavity redesign practically removed thrombus
formation in the bearing area. Ove-all, the VAD development was expedited by extending the incompressibie-flow
simulation procedure originally developed for a rocket pump, thus enabling human implantation. The final measure of
success has been demonstrated through successful human implantations.
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